Posts Tagged ‘Analytics Education’

Data Democratization To Analytics Democratization

One of the more recent buzzword in the world of analytics is data democratization, used in the context of public data, govt. data or just organizational data. In layman terms, it means that everyone in the organization should have access to consistent (and preferably correct and comprehensive) information presented to them in easily consumable formats.

I am a huge fan of the possibilities that data democratization would lead to. However, the real tipping point of the world moving to an analytics led marketplace is analytics democratization, and not just data democratization.

Questions before I go further –

  • Do you think it takes a lot of time for your team to get a particular report/analysis/data slice that you need for, say, an urgent meeting/review?
  • Do you think that there are far too many people  involved in this process of getting the data to you? DW/ BI/ Analytics/ Product/ BU/…?
  • If you are an analyst, do you think you get too many ad-hoc requests in a day? Are some of these what you’d call a re-hash of a previous request? And are you scared of telling the requester that you’ve already given it to them albeit in a different format/ it can be derived from the earlier data dump?
  • If you are a business manager -Do you always get that feeling that you do not have enough information? Do you feel that you need something more? Do you also get frustrated with how long it takes to get the analysis that should have been  a cakewalk? Do you also feel that the analyst has just dumped a whole lot of data without stopping to think about the insights?

If your answer to most of the questions is yes – then your organization is most likely miles away from reaping the benefits of data democratization.

Barrier to adoption

Merely by giving access to data, access and consumption of data cannot be guaranteed. For instance, open source and freely available Linux got the appreciation of a lot of people, but remained the geek’s preferred OS. Masses stuck to their user friendly iOS and Windows systems. Even when Linux became more user friendly, the half-baked OS democratization had already created more barriers for the commoners. And the whole idea of migrating from their existing “warranty led OS” to an open source OS is something that masses (and democracy) were not ready for.

The barrier is not data, but understanding

Most stakeholders who do not advocate data driven thinking, and hence analytics, are the ones who have a limited view of what analytics is. Providing data and reports to them never solves the issue of analytics adoption. A closer look at the real leaders in this industry, e.g. CapOne, P&G, Amazon, Walmart, etc. would tell you that “analytics thinking” is ingrained in the way these organizations function and think. In these organizations, analytics has been democratized.

Data by itself is only half the value

Data is almost like a blunt weapon that can be used to club the enemy, or carved into a knife for the kitchen, or a sword for the battlefield. It can also be converted into a home equipment like needle or farm equipment like spade. Without questioning the merit of democratizing data, the real value of data can only be unleashed by making customizable adoption formats. Most end users would still look for flexible thin applications that help them understand data as per their need, or provide enough reports/dashboards that makes the need to be creative redundant. The latter will lead to the generation and maintenance of hundreds of reports that never get used, or whose existence is never ROI justified.

A report is as the reporter does

bad_dash1The number of dashboards and reports that I have seen in my career is an insignificant number. The significant aspect though is the “narrow’ application of most of these reports. Or, the demand-supply gap. Demand of the user, and supply from the report designer. Also, a lot of these reports are so rigid that a change in them requires raising a service request of sorts that goes through three layers of approvals and few weeks of analyst time. The number of consulting engagements that get delivered on the basis of inconsistent reports that different parts of the organizations use is a different story altogether. I believe that once analytics thinking is democratized, the products/reports/dashboards will start evolving to the needs of the masses, have flexibility to adapt on tap. And that’d be an interesting place!


So, even if you’ve democratized data sufficiently, you need people to understand the tools and skills that enable their conversation with data. I have seen too many “smart” people get scared when you throw too much data at them at a high speed. And whoever tells you that you cannot train the whole world what multicollinearity and mixed models are is likely trying to fool you. They need to tell you that you don’t need to.

Let’s aim for a culture where a quant(?) can communicate in a language that business can understand and the business can communicate in a language the quants can understand. And to that extent, organizations need to invest not just in building Big and Bigger Data capabilities, but also an analytics thinking mindset second.

And that’s an area where I see a significant gap. There are few people capable of educating analytics teams, and fewer capable of educating executives.

Image Credits:
1. Infolytics, here

2. Here

3. Here

%d bloggers like this: